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20. Abstract (continued)

are described and compared to data from the recovered experimental model. The
tunnel closure predictions and the predicted locations of block motion are
in reasonable agreement with some experimental data.

Other aspects of the study included:

e development and application of an analytical technique for
predicting joint activation conditions (i.e., block motions)
for specified joint orientations and locations near the
tunnel surface,

9 calculations and comparisons of tunnel resronse to dynamic
and quasi-static stress loads, and

* investigation of the effects of joint friction on tunnel
damage.
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SECTION 1

INTRODUCTION AND SUMMARY

1.1 BACKGROUND

All rock masses contain large numbers of planar discontinu-

ities or joints. These joints often react to an applied stress

quite differently than the surrounding material and there is both

experimental (Ref. 1) and theoretical (Refs. 2, 3) evidence to

suggest that sliding motion across these joints should be one of

the important considerations involved in designing underground

structures which are to survive nuclear and/or conventional

explosions.

In the recent DIABLO HAWK underground nuclear test, SRI

International fielded several laboratory-scale structures in

jointed rock simulant (Ref. 4). Figure 1 shows the general model

designs. The jointed rock models are 18" and 30" in diameter,

with 3" an-- 5" diameter tunnels, respectively. The SRI small-

scale jointed structures experiment provides an opportunity for

examining the influence of highly idealized jointed arrays on

tunnel closure and damage characteristics.

There are both continuum and explicit approaches for pre-

dictincj tunnel closure and damage in jointed media. In the

continuum approach, the overall mechanical properties of the

field are synthesized from the properties of the intact rock and

the properties and arrangement of the joints; for example, stiff-

nesses and strengths used in the continuum model are lower than

the intact rock properties. In the explicit approach, the prop-

erties and arrangement of individual blocks and joints are

individually and explicitly modeled and used to calculate tunnel

response to loading. Both of these treatments have important

limitations: The rationale for choosing a set of degraded

5
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properties in the continuum approach is usually hard to justify,

and this approach precludes discontinuities in displacements

across joints, which may be a critical omission. The properties

of joints in the explicit approach are hard to measure, and the

arrangement of joints in a real field around a real tunnel can

only be estimated.

1 . 2 01LIP Vi; AND APPROACH

Ti', '13,. ctive of this study is to examine the influence of

ti:'. )ouins uan tunnel closure and damage using numerical techniques

whico explicitly treat the idealized joints in the SRI structure.

The aiproach involves three related aspects:

I. Joint Activation.

An analytical closed form solution is derived for the

initiation or activation of relative motion across a

joint. Thi'c joint activation depends on (a) the rela-

tive orientation of the joint and the tunnel surface

intcrsecti by the Joint, (b) the manitude and propa-

aiation direction of the stress wave encompassing the

tanne I , ard (c ) tihe shuar strus s on the joint wni vc:: must

ex~cOc a critical value which depends on tnie normal

stress across th- joint as well as on surface roughness.

Inl fCctioJn 2, the joint lctivation solution is derived

alku app IAioJU to the SRI sma11-scale models to estimate

(i) ti~c ar(as on tie tunnel surface where joint

activation is likel" to occur, (b) the stress levels

%'-i ch ar1 nct s sary to activate oints of various

ore tations, aind (C) the sensitivity of joint

lct iVyit[i1e to material properties

i . . . . f _-7



2. Dynamic Tunnel Response Cases.

In the SRI small-scale models with tunnel diameters of

3", the transit time across this characteristic dimen-

sion is only 22 pisec in the 16A rock simulant material.

Tnus, since the rise times to peak stresses of 0.8 kbar

in the DIABLO HAWK event are -5-10 msec, these small-

scale structures are actually loaded (and unloaded) in

a uasi-static fashion. Full-scale tunnels may be

loaded more dynamically, therefore the effects of

dynamic loadin. on small-scale tunnels buriud in jointed

media are analyzed using six plane strain computer code

simulations with dynamic loading times of 100-400 :sec.

These cases also vary the assumed joint and tensile

strunath properties of the rock simulant. The WAVE-L

Lacjrancian code is used; the basic formulation is

similar to the HEMP code (Ref. 3) . Tn numerical

solutions and material properties are luscriben in

Section 3.

3. (uas i-S tatic ','u:ii 1 I tstponse Prcdiction For a Small-Sca l
Structure oadt to 0.8 kbar Durini th DlTi3L() HAWK

iuvl t.

- :', i2rica1 - ii:-ulL rcdic tion o. tunnel closure andi

'% iC ' ( rud ith a 1 ielde small-sclie

ji 3" tuninelI. diameter wi th ,

-- I 1 4) i 2 arl; tnlt, c ic lat lonal1-

"-'X. ,;t 1 1i- Y duscribcd 11 7S,'t i01 4.



1.3 SUMMARY AND CONCLUSIONS

1.3.1 Joint Activation

Although the response of a tunnel in a jointed medium must

be solved numerically, the conditions that will initiate joint

slipping can be analyzed in closed form if we assume an elastic

media with joints, and a far field stress state of uniaxial

strain with a stress loading of o load"

Figure 2 shows the loading stress (jload) required to activate

a joint oriented at ,t = 0, 4450, and 90' as a function of the

angle (o) wnere the joint intersects the tunnel surface. Thus

a joint oriented at = 45' will require a loading stress of

.06 kbar ( 900 psi) to become activated if this joint intersects

the tunnel surface at 1 100' (see the following sketch and

Figure 2)

Joint orcnte . t ,, !6

(Unlined tmnnel approximation is valid
I)tcIuse L ' ':. ' "" involves only
small strains and thus the backpacking
in the tunnel will, not contribute a

.. sign if icant stress to the tunnel surface.)

" ,Svrnmct ri cal Joint
., Behavior for + 18(0'

9
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Note that for each joint orientation (,), the shaded reg ion

on Figure 2 shows the angles C:) on the tunnel surface where joint

activation is p>ossible as a function of loading stress (load).

Note that syimetry implies equivalent tunnel behavior at angles

of + 180". Joints will not slit) outside of these shaded regions.

'iThe tunnel angles, . , associated with absolute minimums in load-

ing stress (load ) necessar\ for joint activation are indicated

in Table 1. However, note that the activation stress curves

(Figure 2) are relatively flat bottomed; and therefore, joint

activation can occur over a fairly wide range in tunnel angles

with only a small increase in loading.

dle Io 1. Tunnel Angiles (,) for Minimum oading
Stress tor Various Joint Orientations ( )

JiIt 'fTunnel Angles for Mi nimum
Or) ienta tLion | Load ing+ Stress*

C~. I degree kbar l s i
-- -" t ... . . . . . . . .. . . . . .. ... .. . . ..... . . . . . .

I 07, 113 .068 986

43 103 .059 85U

L) 41, 139 .b2 .)310

4K- 7u, 103 .0s9 835

* resut"t ItiVe constitutive properties are used

( ,I'e1) Joint Co~lesion (io)= .04 kbar, Friction

n; bet' ( ' 33", MIatcri l Poisson' s Ratio (.)=.25.

1' < i :;loWs tlic areas mi the ttnnIl surfiac wliere joi nt

Wt. Iit ,-ui ( tot ,i :;i ntle oint) could OCCtL- I-Or - load - .5 kbar.

11
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All the joint orientations in the SRI experiment are shown for a

representative set of joint and earth media properties. (Varia-

tions in the joint and earth media constitutive properties are

illustrated in Section 2.)

1.3.2 Dynamic Response Cases

Six WAVE-L numerical simulations (Table 3) were performed

involving 100-400 vsec stress rise times to a peak loading stress

of 0.8 kbar on the SRI 3" diameter models. The wave transit time

across the 3" tunnel opening is -22 isec, therefore, the dynamic

tunnel response characteristics could be investigated.

'Llc tensi te stress history near the tunnel crown is strongly

de ,[II llnt ,, lh', stress save rise time for times corresponding

to a te.w tr.,!:iLt toncs across the tunnel diameter. A stress

wav, ri. i:.il oI 100 iscc (--5 transit times) caused a peak ten-

.;; 1. .11 ,,.<..: .ll~mst. I0 bars. In the Iuasi-static loading case

.1 1 t:,11 ,; 110 tnsile stress developed near the crown.

. ,>. 1 ,I the material near the tunnel surface is

, , .. I' ; at ie disp-lacuments* across the joints.

V;' . i . . 1 . a , : oits, the plates ()f rock sepadrited

* . . Ic .0. 1t;usupre beams dUe to the prOeence

, :~ .n , . .': , ros t iln l, am ben qli can1 lCad to

*, i.7 I .7; .. , . 0[. i [ ,<t t).

1 I t 11C 10 lie1(2n1 PrediCt ton 1

I- .;- t c I Ilutioll te1chnique is described in Section 4.

I 1,-i t 1 1 (1t~l~ 10115, 1151 iI. this techlli got' Were mlade'

I ' I I L ,J, 1 :,m,-1c,1 ( I" tIAl;etc tunnel) SP mo iel . The

ii i t, lat I\ %,, I Aclmcnt. or ipi i iiq across a oitit. is mecasured
I ,,1 lit ,!Ilstal, ck, hketwe'ell t.wo , ints which were initiall

1op teacs of te joint.

13



calculation predictions were made prior to excavation and examin-

ation of the model.

Figure 4 shows a comparison of the predicted tunnel closure

(as a % of the diameter) versus tunnel angle, <. The agreement

is reasonable except near the crown-invert (, = 00 and 1800).

The maximum predicted closure is 1.2% at ; 300. The e~peri-

mental data show a maximum 1.6% closure at the crown-invert

compared to a 0.5% predicted value at the crown-invert. This

difference may be due to the moderate sliding on the joints and

associated tensile failure and relaxation which occurs in the

calculation, but not in the experiment.

In the post-shot experimental model, there was deformation

of a thin (.003 inch) stainless steel tunnel liner which surrounds

the foam filler. This liner may have inhibited sliding along the

joints. The observed liner deformation is associated with the

joints which are predicted to slide the most; thus, some "block

motion" appears to have occurred.

It is concluded that tunnel closure in a well-characterized

jointed media could be predicted using existing computer codc

techniques involving explicit descriptions of joint locations,

orientations, and friction properties. Also, because of the

important role joint (and fault) motion plays in determining

damage to tunnel liners and neaiby earth material, it is felt

that continuum approaches to predicting tunnel closure and damage

might not be as useful.

14
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SECTION 2

JOINT ACTIVATION ANALYSIS

The necessary conditions for a joint or block to begin slip-

pingc depend on the relative ,i r.,,;:"- of the joint, the tunnel

surface, and the stress wave, as indicated in the following

sketch:

is thtL2 joint ocienta-
tion angle

oin t
*is the tunnel angle'

(angle whiere joint

Cross* is Lt., angle heCtweenl
W 1,XS i the JOint arnd the

-~ normal Lo thre tunnel

I oad i 11 .
wave

,Jo-int slIipjpaqe will occur when the shear stress ( onl the joint

,cXC,2(2S A CritiCal Value, I .A This vallue depcends on the normal

stes () crs the joint as well as on the sur face roughlness.

Pr ic(r to oi nt activation, thuecart h media around the tunnel is

ass1iume1d to resjpond e21astically and staitical ly to a uniaxia 1 straiin

iuaii fro(,m a (jIuasi-st-atic) ipLanar: wave.

10(



The key characteristics of interest, with respect to , Zn"

are:

* the areas on the tunnel surface where joint
activation is likely to occur,

* the stress levels which are necessary to
activate joints of various orientations,

* the sensitivity of joint activation to material
properties.

Tue determination of these characteristics involves the

following elements:

I. The , ',: " ., -Z; ! ' , ; ' , , .';! field on the unlined
tunnel surface (this stress field is shown in
Figure 5 as a ratio with the loading stress,
i.e. , : i0 oad) .

2. The ,, i,-: ' ,t ,, !*." " , , (i.e., we assume
I m 0 + (tan 11 where 1 and ; arema x o n o
experimentally determined parameters)

3. The -(3a d) -,) P 7 L'?"

. as a function of joint orientation
0 position on the tunnel (-) , and material

properties.

The activation stress load relationship (derived in

Appendix A) is

(2i cos;)/ (sin(2,,-;) - sin! )
loaoa __ _ _ _ _ _ _ _ _ _ _ _ _ _ _(1)

load [ i-2\v I

2 - [I + 2cos(2-;)]

, t-, (see sketcn on previous page)

0 and are joint constitutive parameters

is the Poisson's Ratio for the earth material

17
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Note that Equation 1 shows that of 4, and v are the con-

stitutive properties of interest for joint activation. Table 2

lists tht, numerical values of these properties which were used

to calculate joint activation relationships.

Table 2. Joint and Earth Media Constitutive
Properties

Joint Earth Media

Case Cohesion*, '0 Friction Angle* Poisson's Ratio

kbar psi (degrees)

P1 .04 580 33 .25

P2 .08 1160 33 .25

P3 .02 290 33 .25

P4 .04 580 0 .25

P5 .04 580 33 .40

*Te1m joint cohesion (1 ) and friction angle (:) are related to

the unconfined compressive strength (. ) of the earth media by

2 cos
0

I - sin:

Figure 2 and Figures , to 9 show the variations in load

versus tunnel angle (U) for the joint and earth media property

variations indicated in Table 2. Fiigure 3 and Figures 10 to I3

show the corresponding regions on the tunnel surface where joint

activation is possible for i load = .5 kbar.

1 9
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Comparisons of the results from the constitutive property

cases P1 to P5 leads to the following conclusions:

1. Increasing (or decreasing) the cohesion, E

increases (or decreascs) the minimun loading

stress for joint activation while leaving

unchanged che tunnel angles (S) where joint

activation is most likely.

2. Reducing the fiction angle to 0, thereby

simulating a von Mises limiting shear strength

of -o, causes an expansion of the possible joint

activation region.

3. Varying Poisson's Ratio for the earth media from

v = .25 to v = .40 causes an expansion of the

possible joint activation region.
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SECTION 3

DYNAMIC RESPONSE CASES

In the DIABLO HAWK experiment, the stress wave time history

involves rise times to a peak stress of -0.8 kbars in 5-10 msec.

In Section 4, quasi-static techniques are used to treat this rise

0.8 kb

y)vn a ic eL S|)onSL'

400 ',sec ri-/ I
times -100 msec decav tiT_,

10 I ll5- 10 m.2t,

lime A,\ tkr Wave ,rr i v i at e. x:,i SI rls I ttw

Lime, which is qjuite 1ong with respect to tLunnl rcs ponse. In

Section 3.1, material propcrtius for all the cases are described.

In Scction 3.2, six numerical calcutations involvini mucl, shorter

r sO times of between 00 and 400 sec are described and compared.
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I
3.1 MATERIAL PROPERTIES

16A Rock Simulant

In tae small-scale experiments, the jointed media is 16A

rock simulant. The elastic-plastic properties are modeled with

the following parameters:

Bulk Modulus K = .131 Mbar

Shear Modulus G = .086 Mbar

Poisson's Ratio v = .23

Density , = 2.0 gm/cm 3

Yield Strength Y = .22 kbar + 1.2P, where P
is pressure. A Prandtl-Reuss
non-associated flow rule is
assumed.

ITensil failure is modeled in most of the solutions usinq a

tensile failure model which permits oriented cracks to develop

(Ref. 6) . A 500 psi = 34.5 bar tensile strength was measured

in a simple tensile test (Ref. 7) on a 16A rock simulant sample.

Most of our solutions use this value; in one of the cases, the

tensile strenqth is reduced to 6.9 bars (100 psi) as a sensitivity

study.

In two of the cases, frictional forces along the sliding

joints are included. In these situations the joint constitutive

model is specified by:

maX o + "1, o 0 + (tan:) 2

wi 1c2r e

1 maximum allowable shear stress on joint
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= normal stress on joint

E = the joint cohesion

p = (tank) is the coefficient of friction and i
is the angle of friction

The experimental values (Ref. 7) are

o= 10 psi
0

4 : 300

The Drucker-Prager plastic yield surface assumed for the 16A

rock simulant material does not include shear strength softening

(i.e., reduction of the yield strength) due to plastic shear

deformation or tensile cracking. This may be significant in this

application because the uniaxial strain loadinq path for this
material is close to the yield surface. Therefore, small changes

in the failure surface may lead to large changes in the plastic

response of the 16A rock simulant.

Foam Filler

Tips tunnel is filled with a low density elastic-plastic foam

with the following properties:

Bulk Modulus K = 1.75 kbar

Shear Modulus G = 2.5 kbar

Density 0 = .05 gm/cm,

Von Mises Yield Y = 500 psi = 0.34 kbar
StrenJth
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3.2 CASE COMPARISONS FOR THE 0.8 KBAR DYNAMICALLY LOADED TUNNELS

Table 3 lists the joint geometry, tensile limit, rise time,

and material model for the six dynamic loading cases. In all

cases the tunnel is filled with low density foam with properties

described in Section 3.1.

The loading is a plane wave of 0.8 kbar magnitude. The

stress increases linearly from 0 to 0.8 kbar over a characteris-

tic rise time Tr' (100 lisec in most of these cases). A constant
r'

pressure of 0.8 bar is maintained after T The far-field con-

dition of the pulse (i.e., prior to interaction with the tunnel)

is uniaxial strain.

3.2.1 Effect of Loading Rise Time

In the first three cases, the rock media is modeled as an

elastic-plastic media witn no joints or tensile failure. Cases

1, 2, and 3 differ in their loading rise times (T = 100, 200,r

ani 400 psec). Cases 4, 5, and 6 have joints which are perpe:

dicular to the wave vector as indicated in Table 3; in these

cases, the joint properties and tensile strength of the media

are varied.

Figure 14 shows particle velocity (upper part of figure)

and principal stress (low(,r part) fields at 62 iisec for Case I.

Note that tie velocity and stress fields have a plane of symmetry

which suparates the two fields. The scale bars for the velocity

vectors and principal stresses are shown on th is fiqure. The

followiln; sr etci defines the plottin(o convention for the principal

tress

'r ill,
I - [ ii'- -i -4-

i ' ' i i i 'I II " '. I { i ' 'I It l;i dl l t
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Table 3. The Dynamic Loading Cases

Cast: Joints Tensile Limit Rise Time -

None None i00 Isec

None None 200 vsec

None None 400 isec

3 N~ritonesNs 00~e

Frictionless 100 psi (6.9 bars) 100 Osec

ito Wave Vector

Frictionless 500 psi (34.5 bars) 100 jsec

Lto Wave Vector

With Friction

6([max 10 psi + .6 ') 500 psi (34.5 bars) 100 isec

ILto Wave Vector

St res
Wave

Sron t

' W~ I Vector

(C;-IStQ 4 5 )
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In Cases 4 and 5 the sensitivity of the solution to varia-

tions in the tensile strunqth of the rock medium is examined.

In Case 4, the 16A rock simulant has a tensile stronjth of

b.9 bars (= I00 psi); in Case 5, a strength of 34.5 bars

(= 500 psi) is used. The effect on the tensile crack formation

is shown in l.'iqures 17 and 18 which show these two cases at two

different times.

Case 6 implements all the material and joint properties used

in tio diuasi-static DIABLO HAWK simulation (Section 4), includin;

friction along the joints. The presence of the friction is the

only uifference between Case 5 and 6. The final crack pattern in

Case 6 is compared to Case 5 in Figure 19. -.

Tensile crackinq of the material near the tunnel surtace is

closcev related to the relative slide displacments across the

Ioints. Wnen silpi ) Occurs across e ilts, tie 01. te. e

sep1aratCd i t.ne joint s can act as ULnsupported beamTS d u' t() the

'rCSCilce v L1 ie lli r] nekd ttU n1 .. The resnlt iikg beam bendin,; lcads

to tensile strCsses anA t racture.
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SECTION 4

DIABLO HAWK SMALL-SCALE STRUCTURE PREDICTION CASE

This numerical simulaticni was intended to match a fielded

small-scale SRI model. The calculation results %,ere obtained

to the excavation of the model. The particular model is

designated as S-Dl-2-5 by SRI.

4.1 PROBLEP : CONFIGURATION

The tunnel diamieter is 3" .Joint spac:ing is nominally 2

(0.47") . The oundaries of thle numerical qrid are at 9.45' from

tile tunnel10 cen2,ter (U ..3 timesk_ thle run:ll 2 raldiuIs , w.hich i.s suf-

I i c ent to miiiz dqc el.fects in the regi rn of Lnteres t . The(

lc i nt ueome t nI-v is s own with~ the i nit ial camnput at - nal r inl

Fi'ioure 20.

Materia~l properties of the 16A rock simulant and foa-m f ii cr-

arc uescribedi in Sect ion 3.1. The frictionall pranertics - atf Jik_

joinlts a~re, also discussed Inl tuact sectionl

The Lunlll( anl-' jointed mnedia are sub lected to a planar stress

waeof 0.8 kbrUa~ap ua.The rise timeik is )-I()

thle 22) s ec sound waive traii- it tine, across thle tulnnel diameter

inl thle 1oi n ate r ta 1. The_ alctual tLunnel, there fore , is inl a

uIs -staItic" state.

4 .2 QUA I -STATIC OUT IoNT CIINIQUI]

Tile juasi-stat ic solution is to~ind as; indicaited onl Figjure 21:

I. Obta-in the eLastic soIlutionl to A tUnll, loalded With

thue 0).6 kualr (tIar-t ici1d tiniax~i-a1 strin1) stresses.
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2. Using the elastic solution as initial conditions,

activate the elastic-plastic material model and

calculate the dynamics until a steady state

solution is obtained.

3. Using this elastic-plastic solution as initial

conditions, a calculation is performed with the

slide lines introduced to model the joints and

permit block motion and deformation. Also, the

material may fall in tension if the tensile

stresses exceed 500 psi in any principal

direction. The dynamic calculation is continued

until tensile failure, block motion and tunnel

deformation have stopped, and a steady-state

solution is thereby obtained.

4.3 JOINT SLIDING

Peak slide displacements of I" of the tunnel diameter are

predicted in the quasi-static solution. In a full sized tunnel,

with a diameter of 10 feet, this corresponds to 1.2 inches of

sllding.

Figure 22 shows the slide displacement along the joint as a

function of distance (scaled by tunnel radius) from the tunnel

axis. The sliding is a maximum at about one radius along the

joints nearcst the tunncl crown and invert (Joints 3 and 9 in

Figure 22)

4.4 TENSILI CRACKING

The tensile cracking is closely related to the relative slide

displacements across the jolnts. When slipping occurs across a

joint, tile plites o[ rock separated by the joints act as beams.
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The presence of the unlined tunnel removes localized support,

and beam bending leads to tensile stresses and fracture.

The crack pattern obtained in the numerical solution is

shown in Figure 23. The "beams" terminating in the opening

show significant cracking of the unsupported cantilevered ends.

4.5 TUNNEL CLOSURE AND COMPARISON WITH EXPERIMENTAL DATA

The tunnel closure predictions are shown on Figure 24. The

closure along the vertical axis (i.e., crown-invert) is approxi-

mately 0.5%. The maximum closure of 1.2, is located at 0 = 300.

Figure 24 shows a comparison of the actual and predicted

tunnel closure (as a % of the diameter) versus tunnel angle. The

agreement is quite good except near the crown-invert (U = 0' and

1800). The experimental data show a 1.6% closure at the crown-

invert compared to a 0.5% predicted value. This difference is

probably due to the moderate sliding on the joints and associated

tensile failure and relaxation which occurs in the calculations,

but not in the experiment.

In the quasi-static calculation, tensile cracking occurs

after the joints are "unlocked" and joint sliding begins (see

Section 4.4 and Figure 22). Tensile failure is not evident in

the post-shot experimental model (Figure 25). If the metal casing

(which is not modeled in the calculation) reduced the sliding on

the joints, or if the actual joints are stronger (higher cohesion

and/or higher co,,fficient of friction) than used in the calcula-

tion, then there would be less block motion in the experiment,

and therefore there would also be less tensile failure.

Fi(:urt_ 23) shows th(, post-shot experimental model. Note the

den formation of th,- thin (.003 inch) metal casincg (or liner)

surroun ni tn h c> fam. This casin my have inhibiteid -l1iding
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APPENDIX A

JOINT ACTIVATION CONDITIONS NEAR A CYLINDRICAL TUNNEL

The relationships between the principal stress components

( i, ce), joint and tunnel angles ( , S), and constitutive acti-

vation properties will be obtained using a Mohr diagram (Ref. 8).

The joint constitutive model is specified by

I : + h~o

[ max '1 o n

or (A-i)
= + (tan $.)

max o n

where

Imax the maximum allowable shear stress on the joint

n the normal stress on the joint

= the joint cohesion

= tan ' is the coefficient of friction and : is
the angle of friction.

Figure A-i (page 57) is a Mohr diagram which shows (1) the

shear stress and normal stress - for the joint constitutiven
model (Equation A-i), and (2) the possible shear and normal stress

states corresponding to the principal stresses ", and . The

following sketch (page 54) indicates the geometrical interpretation

of the Mohr diagram in terms of the stresses on a joint near a

tunnel surface:
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Doing the algebra and solvinq for (, we find,

2 :(snW~ + sin 21 0 sin ' (A- 3)

Lquation A-3 relates the two principal stresses such that

an oriented joint (with angjle , between tile tunnel normal and

the joint) will lead to joint activation. A more physical and

useful relationship for a plane stress wave engulfing a tunnel

can be obtaincd on a , o..'

on an .2 tunnel surface, one principal stress component

vanishes; i.e. , a 0. Thus, the tangential stress, 2,on the

tunnel surface for joint activation is

2 0 G sill2-, 0Cos
11 ___ (A-4)

si(2,- - s in sin(2-,-; ) - sin

When a plane wave engjulfs a tunnel, however, the tangential sc

varies witn the anqle on the tunnel surface as illustrated in the

following sketch:

ltlflhlC 0.- [I 1 r (2.)J

;mdI~h in St load ~ , on hmint Sur t'w
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In the sketch, A(3) is the amplification factor of the

J wave. A() depends on the angle on the tunnel surface
load

and on the elastic Poisson's Ratio (v) of the media. The deri-

vation for A(s) can be obtained by superposition ot elastic

solutions derived in Reference 8. Figure 5 (in body of report)

shows A(s) for v = .25 and .4.

Since ol = 0 and 02 = A(s), uload' Equation A-4 shows that

2- cos p
load A(,) [sin(2- ) - sin 4]A(B) (A-)

where

A() = 2 - [1 + 2cos(23)] 1-2v
1-V

This is thc activation stress load relationship (Equation 1)

used in thQ report.
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Figure A-1. Mohr Diagram Relating the Shear Stress (T) and Normal Stress
(1-3 n) for a Typical Stress State Which Satisfies the Incipient

Joint Slippage Criteria at 0 = 4 l and 0 = q)2-
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